Nucleic Acids Research

RNautophagy/DNautophagy possesses selectivity for RNA/DNA substrates

Hase, K., Fujiwara, Y., Kikuchi, H., Aizawa, S., Hakuno, F., Takahashi, S.-I., Wada, K., Kabuta, T..

Lysosomes can degrade various biological macromolecules, including nucleic acids, proteins and lipids. Recently, we identified novel nucleic acid-degradation systems termed RNautophagy/DNautophagy (abbreviated as RDA), in which RNA and DNA are directly taken up by lysosomes in an ATP-dependent manner and degraded. We also found that a lysosomal membrane protein, LAMP2C, the cytoplasmic region of which binds to RNA and DNA, functions, at least in part, as an RNA/DNA receptor in the process of RDA. However, it has been unclear whether RDA possesses selectivity for RNA/DNA substrates and the RNA/DNA sequences that are recognized by LAMP2C have not been determined. In the present study, we found that the cytosolic region of LAMP2C binds to poly-G/dG, but not to poly-A/dA, poly-C/dC, poly-dT or poly-U. Consistent with this binding activity, poly-G/dG was transported into isolated lysosomes via RDA, while poly-A/dA, poly-C/dC, poly-dT and poly-U were not. GGGGGG or d(GGGG) sequences are essential for the interaction between poly-G/dG and LAMP2C. In addition to poly-G/dG, G/dG-rich sequences, such as a repeated GGGGCC sequence, interacted with the cytosolic region of LAMP2C. Our findings indicate that RDA does possess selectivity for RNA/DNA substrates and that at least some consecutive G/dG sequence(s) can mediate RDA.