Motivation: Multiple sequence alignment (MSA) is important work, but bottlenecks arise in the massive MSA of homologous DNA or genome sequences. Most of the available state-of-the-art software tools cannot address large-scale datasets, or they run rather slowly. The similarity of homologous DNA sequences is often ignored. Lack of parallelization is still a challenge for MSA research.
Results: We developed two software tools to address the DNA MSA problem. The first employed trie trees to accelerate the centre star MSA strategy. The expected time complexity was decreased to linear time from square time. To address large-scale data, parallelism was applied using the hadoop platform. Experiments demonstrated the performance of our proposed methods, including their running time, sum-of-pairs scores and scalability. Moreover, we supplied two massive DNA/RNA MSA datasets for further testing and research.
Availability and implementation: The codes, tools and data are accessible free of charge at http://datamining.xmu.edu.cn/software/halign/.
Contact: zouquan@nclab.net or ghwang@hit.edu.cn