Nature
Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules
Xu Chen, Laurie Grandont, Hongjiang Li, Robert Hauschild, Sébastien Paque, Anas Abuzeineh, Hana Rakusová, Eva Benkova, Catherine Perrot-Rechenmann, Jiří Friml.
The prominent and evolutionarily ancient role of the plant hormone auxin is the regulation of cell expansion. Cell expansion requires ordered arrangement of the cytoskeleton but molecular mechanisms underlying its regulation by signalling molecules including auxin are unknown. Here we show in the model plant Arabidopsis thaliana that in elongating cells exogenous application of auxin or redistribution of endogenous auxin induces very rapid microtubule re-orientation from transverse to longitudinal, coherent with the inhibition of cell expansion. This fast auxin effect requires auxin binding protein 1 (ABP1) and involves a contribution of downstream signalling components such as ROP6 GTPase, ROP-interactive protein RIC1 and the microtubule-severing protein katanin. These components are required for rapid auxin- and ABP1-mediated re-orientation of microtubules to regulate cell elongation in roots and dark-grown hypocotyls as well as asymmetric growth during gravitropic responses.