MicroRNAs (miRNAs) are small non-coding elements involved in the post-transcriptional down-regulation of gene expression through base pairing with messenger RNAs (mRNAs). Through this mechanism, several miRNA–mRNA pairs have been described as critical in the regulation of multiple cellular processes, including early embryonic development and pathological conditions. Many of these pairs (such as miR-15 b/BCL2 in apoptosis or BART-6/BCL6 in diffuse large B-cell lymphomas) were experimentally discovered and/or computationally predicted. Available tools for target prediction are usually based on sequence matching, thermodynamics and conservation, among other approaches. Nevertheless, the main issue on miRNA–mRNA pair prediction is the little overlapping results among different prediction methods, or even with experimentally validated pairs lists, despite the fact that all rely on similar principles. To circumvent this problem, we have developed miRGate, a database containing novel computational predicted miRNA–mRNA pairs that are calculated using well-established algorithms. In addition, it includes an updated and complete dataset of sequences for both miRNA and mRNAs 3'-Untranslated region from human (including human viruses), mouse and rat, as well as experimentally validated data from four well-known databases. The underlying methodology of miRGate has been successfully applied to independent datasets providing predictions that were convincingly validated by functional assays. miRGate is an open resource available at http://mirgate.bioinfo.cnio.es. For programmatic access, we have provided a representational state transfer web service application programming interface that allows accessing the database at http://mirgate.bioinfo.cnio.es/API/
Database URL: http://mirgate.bioinfo.cnio.es