The manual curation of the information in biomedical resources is an expensive task. This article argues the value of this approach in comparison with other apparently less costly options, such as automated annotation or text-mining, then discusses ways in which databases can make cost savings by sharing infrastructure and tool development. Sharing curation effort is a model already being adopted by several data resources. Approaches taken by two of these, the Gene Ontology annotation effort and the IntAct molecular interaction database, are reviewed in more detail. These models help to ensure long-term persistence of curated data and minimizes redundant development of resources by multiple disparate groups.
Database URL: http://www.ebi.ac.uk/intact and http://www.ebi.ac.uk/GOA/