Scientific Reports 5

High-throughput sequencing of small RNAs and anatomical characteristics associated with leaf development in celery

Xiao-Ling Jia, Meng-Yao Li, Qian Jiang, Zhi-Sheng Xu, Feng Wang, Ai-Sheng Xiong.
MicroRNAs (miRNAs) exhibit diverse and important roles in plant growth, development, and stress responses and regulate gene expression at the post-transcriptional level. Knowledge about the diversity of miRNAs and their roles in leaf development in celery remains unknown. To elucidate the roles of miRNAs in celery leaf development, we identified leaf development-related miRNAs through high-throughput sequencing. Small RNA libraries were constructed using leaves from three stages (10, 20, and 30 cm) of celery cv.‘Ventura’ and then subjected to high-throughput sequencing and bioinformatics analysis. At Stage 1, Stage 2, and Stage 3 of ‘Ventura’, a total of 333, 329, and 344 conserved miRNAs (belonging to 35, 35, and 32 families, respectively) were identified. A total of 131 miRNAs were identified as novel in ‘Ventura’. Potential miRNA target genes were predicted and annotated using the eggNOG, GO, and KEGG databases to explore gene functions. The abundance of five conserved miRNAs and their corresponding potential target genes were validated. Expression profiles of novel potential miRNAs were also detected. Anatomical characteristics of the leaf blades and petioles at three leaf stages were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in celery leaf development.