by Yuhui Liu, Kui Lin-Wang, Cecilia Deng, Ben Warran, Li Wang, Bin Yu, Hongyu Yang, Jing Wang, Richard V. Espley, Junlian Zhang, Di Wang, Andrew C. Allan
IntroductionThe potato (Solanum tuberosum) cultivar ‘Xin Daping’ is tetraploid with white skin and white flesh, while the cultivar ‘Hei Meiren’ is also tetraploid with purple skin and purple flesh. Comparative transcriptome analysis of white and purple cultivars was carried out using high-throughput RNA sequencing in order to further understand the mechanism of anthocyanin biosynthesis in potato.
Methods and ResultsBy aligning transcript reads to the recently published diploid potato genome and de novo assembly, 209 million paired-end Illumina RNA-seq reads from these tetraploid cultivars were assembled on to 60,930 transcripts, of which 27,754 (45.55%) are novel transcripts and 9393 alternative transcripts. Using a comparison of the RNA-sequence datasets, multiple versions of the genes encoding anthocyanin biosynthetic steps and regulatory transcription factors were identified. Other novel genes potentially involved in anthocyanin biosynthesis in potato tubers were also discovered. Real-time qPCR validation of candidate genes revealed good correlation with the transcriptome data. SNPs (Single Nucleotide Polymorphism) and indels were predicted and validated for the transcription factors MYB AN1 and bHLH1 and the biosynthetic gene anthocyanidin 3-O-glucosyltransferase (UFGT).
ConclusionsThese results contribute to our understanding of the molecular mechanism of white and purple potato development, by identifying differential responses of biosynthetic gene family members together with the variation in structural genes and transcription factors in this highly heterozygous crop. This provides an excellent platform and resource for future genetic and functional genomic research.