In this commentary, I make inferences about the level of repeatability and constraint in the evolutionary process, based on two sets of replicated experiments. The first experiment is crop domestication, which has been replicated across many different species. I focus on results of whole-genome scans for genes selected during domestication and ask whether genes are, in fact, selected in parallel across different domestication events. If genes are selected in parallel, it implies that the number of genetic solutions to the challenge of domestication is constrained. However, I find no evidence for parallel selection events either between species (maize vs. rice) or within species (two domestication events within beans). These results suggest that there are few constraints on genetic adaptation, but conclusions must be tempered by several complicating factors, particularly the lack of explicit design standards for selection screens. The second experiment involves the evolution of Escherichia coli to thermal stress. Unlike domestication, this highly replicated experiment detected a limited set of genes that appear prone to modification during adaptation to thermal stress. However, the number of potentially beneficial mutations within these genes is large, such that adaptation is constrained at the genic level but much less so at the nucleotide level. Based on these two experiments, I make the general conclusion that evolution is remarkably flexible, despite the presence of epistatic interactions that constrain evolutionary trajectories. I also posit that evolution is so rapid that we should establish a Speciation Prize, to be awarded to the first researcher who demonstrates speciation with a sexual organism in the laboratory.