Nucleic Acids Research

FlyNet: a versatile network prioritization server for the Drosophila community

Shin, J., Yang, S., Kim, E., Kim, C. Y., Shim, H., Cho, A., Kim, H., Hwang, S., Shim, J. E., Lee, I..

Drosophila melanogaster (fruit fly) has been a popular model organism in animal genetics due to the high accessibility of reverse-genetics tools. In addition, the close relationship between the Drosophila and human genomes rationalizes the use of Drosophila as an invertebrate model for human neurobiology and disease research. A platform technology for predicting candidate genes or functions would further enhance the usefulness of this long-established model organism for gene-to-phenotype mapping. Recently, the power of network prioritization for gene-to-phenotype mapping has been demonstrated in many organisms. Here we present a network prioritization server dedicated to Drosophila that covers ~95% of the coding genome. This server, dubbed FlyNet, has several distinctive features, including (i) prioritization for both genes and functions; (ii) two complementary network algorithms: direct neighborhood and network diffusion; (iii) spatiotemporal-specific networks as an additional prioritization strategy for traits associated with a specific developmental stage or tissue and (iv) prioritization for human disease genes. FlyNet is expected to serve as a versatile hypothesis-generation platform for genes and functions in the study of basic animal genetics, developmental biology and human disease. FlyNet is available for free at http://www.inetbio.org/flynet.