WAXSiS: a web server for the calculation of SAXS/WAXS curves based on explicit-solvent molecular dynamics

waxsis:Web服务器计算的SAXS / WAXS基于显式溶剂分子动力学曲线

Small- and wide-angle X-ray scattering (SWAXS) has evolved into a powerful tool to study biological macromolecules in solution. The interpretation of SWAXS curves requires their accurate predictions from structural models. Such predictions are complicated by scattering contributions from the hydration layer and by effects from thermal fluctuations. Here, we describe the new web server WAXSiS (WAXS in solvent) that computes SWAXS curves based on explicit-solvent all-atom molecular dynamics (MD) simulations (http://waxsis.uni-goettingen.de/). The MD simulations provide a realistic model for both the hydration layer and the excluded solvent, thereby avoiding any solvent-related fitting parameters, while naturally accounting for thermal fluctuations.

[详细]

  • Nucleic Acids Research
  • 9年前
  • Web Server issue

PheNetic: network-based interpretation of molecular profiling data

分类:基于网络的分子表达谱数据的解释

Molecular profiling experiments have become standard in current wet-lab practices. Classically, enrichment analysis has been used to identify biological functions related to these experimental results. Combining molecular profiling results with the wealth of currently available interactomics data, however, offers the opportunity to identify the molecular mechanism behind an observed molecular phenotype. In this paper, we therefore introduce ‘PheNetic’, a user-friendly web server for inferring a sub-network based on probabilistic logical querying. PheNetic extracts from an interactome, the sub-network that best explains genes prioritized through a molecular profiling experiment. Depending on its run mode, PheNetic searches either for a regulatory mechanism that gave explains to the observed molecular phenotype or for the pathways (in)activated in the molecular phenotype. The web server provides access to a large number of interactomes, making sub-network inference readily applicable to a wide variety of organisms. The inferred sub-networks can be interactively visualized in the browser. PheNetic's method and use are illustrated using an example analysis of differential expression results of ampicillin treated Escherichia coli cells. The PheNetic web service is available at http://bioinformatics.intec.ugent.be/phenetic/.

[详细]

  • Nucleic Acids Research
  • 9年前
  • Web Server issue

NGS-eval: NGS Error analysis and novel sequence VAriant detection tooL

评价:农工商农工商误差分析和新的序列变异检测工具

Massively parallel sequencing of microbial genetic markers (MGMs) is used to uncover the species composition in a multitude of ecological niches. These sequencing runs often contain a sample with known composition that can be used to evaluate the sequencing quality or to detect novel sequence variants. With NGS-eval, the reads from such (mock) samples can be used to (i) explore the differences between the reads and their references and to (ii) estimate the sequencing error rate. This tool maps these reads to references and calculates as well as visualizes the different types of sequencing errors. Clearly, sequencing errors can only be accurately calculated if the reference sequences are correct. However, even with known strains, it is not straightforward to select the correct references from databases. We previously analysed a pyrosequencing dataset from a mock sample to estimate sequencing error rates and detected sequence variants in our mock community, allowing us to obtain an accurate error estimation. Here, we demonstrate the variant detection and error analysis capability of NGS-eval with Illumina MiSeq reads from the same mock community. While tailored towards the field of metagenomics, this server can be used for any type of MGM-based reads. NGS-eval is available at http://www.ibi.vu.nl/programs/ngsevalwww/.

[详细]

  • Nucleic Acids Research
  • 9年前
  • Web Server issue

MnTEdb, a collective resource for mulberry transposable elements

mntedb,桑树转座子的集体资源

Mulberry has been used as an economically important food crop for the domesticated silkworm for thousands of years, resulting in one of the oldest and well-known plant-herbivore interactions. The genome of Morus notabilis has now been sequenced and there is an opportunity to mine the transposable element (TE) data. To better understand the roles of TEs in structural, functional and evolutionary dynamics of the mulberry genome, a specific, comprehensive and user-friendly web-based database, MnTEdb, was constructed. It was built based on a detailed and accurate identification of all TEs in mulberry. A total of 5925 TEs belonging to 13 superfamilies and 1062 families were deposited in this database. MnTEdb enables users to search, browse and download the mulberry TE sequences. Meanwhile, data mining tools, including BLAST, GetORF, HMMER, Sequence Extractor and JBrowse were also integrated into MnTEdb. MnTEdb will assist researchers to efficiently take advantage of our newly annotated TEs, which facilitate their studies in the origin, amplification and evolution of TEs, as well as the comparative analysis among the different species.

Database URL: http://morus.swu.edu.cn/mntedb/

[详细]

  • Database
  • 9年前
  • Database Tool

An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools

利用GWAS SNP数据更好的选择mirnasnp数据库更新,miRNA的表达和在线工具

MicroRNAs (miRNAs) are key regulators of gene expression involved in a broad range of biological processes. MiRNASNP aims to provide single nucleotide polymorphisms (SNPs) in miRNAs and genes that may impact miRNA biogenesis and/or miRNA target binding. Advanced miRNA research provided abundant data about miRNA expression, validated targets and related phenotypic variants. In miRNASNP v2.0, we have updated our previous database with several new data and features, including: (i) expression level and expression correlation of miRNAs and target genes in different tissues, (ii) linking SNPs to the results of genome-wide association studies, (iii) integrating experimentally validated miRNA:mRNA interactions, (iv) adding multiple filters to prioritize functional SNPs. In addition, as a supplement of the database, we have set up three flexible online tools to analyse the influence of novel variants on miRNA:mRNA binding. A new nice web interface was designed for miRNASNP v2.0 allowing users to browse, search and download. We aim to maintain the miRNASNP as a solid resource for function, genetics and disease studies of miRNA-related SNPs. Database URL: http://bioinfo.life. hust.edu.cn/miRNASNP2/.

[详细]

  • Database
  • 9年前
  • Database Update

Overlap and diversity in antimicrobial peptide databases: compiling a non-redundant set of sequences

重叠和多样性在抗菌肽数据库:编译非冗余序列

Motivation: The large variety of antimicrobial peptide (AMP) databases developed to date are characterized by a substantial overlap of data and similarity of sequences. Our goals are to analyze the levels of redundancy for all available AMP databases and use this information to build a new non-redundant sequence database. For this purpose, a new software tool is introduced.

Results: A comparative study of 25 AMP databases reveals the overlap and diversity among them and the internal diversity within each database. The overlap analysis shows that only one database (Peptaibol) contains exclusive data, not present in any other, whereas all sequences in the LAMP_Patent database are included in CAMP_Patent. However, the majority of databases have their own set of unique sequences, as well as some overlap with other databases. The complete set of non-duplicate sequences comprises 16 990 cases, which is almost half of the total number of reported peptides. On the other hand, the diversity analysis identifies the most and least diverse databases and proves that all databases exhibit some level of redundancy. Finally, we present a new parallel-free software, named Dover Analyzer, developed to compute the overlap and diversity between any number of databases and compile a set of non-redundant sequences. These results are useful for selecting or building a suitable representative set of AMPs, according to specific needs.

Availability and implementation: The regularly updated non-redundant sequence databases and the Dover Analyzer software to perform custom analysis are available at http://mobiosd-hub.com/doveranalyzer/.

Contact: ymarrero77@yahoo.es

Supplementary information: supplementary data are available at Bioinformatics online.

[详细]

  • Bioinformatics
  • 9年前
  • ORIGINAL PAPER

Family genome browser: visualizing genomes with pedigree information

家庭基因组浏览器:可视化与谱系基因组信息

Motivation: Families with inherited diseases are widely used in Mendelian/complex disease studies. Owing to the advances in high-throughput sequencing technologies, family genome sequencing becomes more and more prevalent. Visualizing family genomes can greatly facilitate human genetics studies and personalized medicine. However, due to the complex genetic relationships and high similarities among genomes of consanguineous family members, family genomes are difficult to be visualized in traditional genome visualization framework. How to visualize the family genome variants and their functions with integrated pedigree information remains a critical challenge.

Results: We developed the Family Genome Browser (FGB) to provide comprehensive analysis and visualization for family genomes. The FGB can visualize family genomes in both individual level and variant level effectively, through integrating genome data with pedigree information. Family genome analysis, including determination of parental origin of the variants, detection of de novo mutations, identification of potential recombination events and identical-by-decent segments, etc., can be performed flexibly. Diverse annotations for the family genome variants, such as dbSNP memberships, linkage disequilibriums, genes, variant effects, potential phenotypes, etc., are illustrated as well. Moreover, the FGB can automatically search de novo mutations and compound heterozygous variants for a selected individual, and guide investigators to find high-risk genes with flexible navigation options. These features enable users to investigate and understand family genomes intuitively and systematically.

Availability and implementation: The FGB is available at http://mlg.hit.edu.cn/FGB/.

Contact: ydwang@hit.edu.cn.

[详细]

  • Bioinformatics
  • 9年前
  • ORIGINAL PAPER

Computational approaches towards understanding human long non-coding RNA biology

计算方法对理解人类生物学长非编码RNA

Long non-coding RNAs (lncRNAs) form the largest class of non-protein coding genes in the human genome. While a small subset of well-characterized lncRNAs has demonstrated their significant role in diverse biological functions like chromatin modifications, post-transcriptional regulation, imprinting etc., the functional significance of a vast majority of them still remains an enigma. Increasing evidence of the implications of lncRNAs in various diseases including cancer and major developmental processes has further enhanced the need to gain mechanistic insights into the lncRNA functions. Here, we present a comprehensive review of the various computational approaches and tools available for the identification and annotation of long non-coding RNAs. We also discuss a conceptual roadmap to systematically explore the functional properties of the lncRNAs using computational approaches.

Contact: vinods@igib.in

[详细]

  • Bioinformatics
  • 9年前
  • REVIEW

PLIP: fully automated protein-ligand interaction profiler

行业:全自动蛋白-配体相互作用分析器

The characterization of interactions in protein–ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein–ligand interaction profiler (PLIP), a novel web service for fully automated detection and visualization of relevant non-covalent protein–ligand contacts in 3D structures, freely available at projects.biotec.tu-dresden.de/plip-web. The input is either a Protein Data Bank structure, a protein or ligand name, or a custom protein–ligand complex (e.g. from docking). In contrast to other tools, the rule-based PLIP algorithm does not require any structure preparation. It returns a list of detected interactions on single atom level, covering seven interaction types (hydrogen bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water bridges and halogen bonds). PLIP stands out by offering publication-ready images, PyMOL session files to generate custom images and parsable result files to facilitate successive data processing. The full python source code is available for download on the website. PLIP's command-line mode allows for high-throughput interaction profiling.

[详细]

  • Nucleic Acids Research
  • 9年前
  • Web Server issue

Microfluidic droplet enrichment for targeted sequencing

微液滴的富集靶向测序

Targeted sequence enrichment enables better identification of genetic variation by providing increased sequencing coverage for genomic regions of interest. Here, we report the development of a new target enrichment technology that is highly differentiated from other approaches currently in use. Our method, MESA (Microfluidic droplet Enrichment for Sequence Analysis), isolates genomic DNA fragments in microfluidic droplets and performs TaqMan PCR reactions to identify droplets containing a desired target sequence. The TaqMan positive droplets are subsequently recovered via dielectrophoretic sorting, and the TaqMan amplicons are removed enzymatically prior to sequencing. We demonstrated the utility of this approach by generating an average 31.6-fold sequence enrichment across 250 kb of targeted genomic DNA from five unique genomic loci. Significantly, this enrichment enabled a more comprehensive identification of genetic polymorphisms within the targeted loci. MESA requires low amounts of input DNA, minimal prior locus sequence information and enriches the target region without PCR bias or artifacts. These features make it well suited for the study of genetic variation in a number of research and diagnostic applications.

[详细]

  • Nucleic Acids Research
  • 9年前
  • Methods Online

cMonkey2: Automated, systematic, integrated detection of co-regulated gene modules for any organism

cmonkey2:自动化,系统化,任何生物的共调控基因模块综合检测

The cMonkey integrated biclustering algorithm identifies conditionally co-regulated modules of genes (biclusters). cMonkey integrates various orthogonal pieces of information which support evidence of gene co-regulation, and optimizes biclusters to be supported simultaneously by one or more of these prior constraints. The algorithm served as the cornerstone for constructing the first global, predictive Environmental Gene Regulatory Influence Network (EGRIN) model for a free-living cell, and has now been applied to many more organisms. However, due to its computational inefficiencies, long run-time and complexity of various input data types, cMonkey was not readily usable by the wider community. To address these primary concerns, we have significantly updated the cMonkey algorithm and refactored its implementation, improving its usability and extendibility. These improvements provide a fully functioning and user-friendly platform for building co-regulated gene modules and the tools necessary for their exploration and interpretation. We show, via three separate analyses of data for E. coli, M. tuberculosis and H. sapiens, that the updated algorithm and inclusion of novel scoring functions for new data types (e.g. ChIP-seq and transcription factor over-expression [TFOE]) improve discovery of biologically informative co-regulated modules. The complete cMonkey2 software package, including source code, is available at https://github.com/baliga-lab/cmonkey2.

[详细]

  • Nucleic Acids Research
  • 9年前
  • Methods Online

ExaML version 3: a tool for phylogenomic analyses on supercomputers

ExaML版本3:phylogenomic分析超级计算机的工具

Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Because of the next generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. We present ExaML version 3, a dedicated production-level code for inferring phylogenies on whole-transcriptome and whole-genome alignments using supercomputers.

Results: We introduce several improvements and extensions to ExaML: Extensions of substitution models and supported data types, the integration of a novel load balance algorithm as well as a parallel I/O optimization that significantly improve parallel efficiency, and a production-level implementation for Intel MIC-based hardware platforms.

Availability and implementation: The code is available under GNU GPL at https://github.com/sta matak/ExaML.

Contact: Alexandros.Stamatakis@h-its.org

Supplementary information: Supplementary data are available at Bioinformatics online.

[详细]

  • Bioinformatics
  • 9年前
  • APPLICATIONS NOTE

bio-samtools 2: a package for analysis and visualization of sequence and alignment data with SAMtools in Ruby

bio-samtools 2:一个包序列和对齐的数据分析和可视化的SAMtools Ruby

Motivation: bio-samtools is a Ruby language interface to SAMtools, the highly popular library that provides utilities for manipulating high-throughput sequence alignments in the Sequence Alignment/Map format. Advances in Ruby, now allow us to improve the analysis capabilities and increase bio-samtools utility, allowing users to accomplish a large amount of analysis using a very small amount of code. bio-samtools can also be easily developed to include additional SAMtools methods and hence stay current with the latest SAMtools releases.

Results: We have added new Ruby classes for the MPileup and Variant Call Format (VCF) data formats emitted by SAMtools and introduced more analysis methods for variant analysis, including alternative allele calculation and allele frequency calling for SNPs. Our new implementation of bio-samtools also ensures that all the functionality of the SAMtools library is now supported and that bio-samtools can be easily extended to include future changes in SAMtools. bio-samtools 2 also provides methods that allow the user to directly produce visualization of alignment data.

Availability and implementation: bio-samtools is available as a BioGem from http://www.biogems.info or as source code from https://github.com/helios/bioruby-samtools under the MIT License.

Contact: dan.maclean@tsl.ac.uk

[详细]

  • Bioinformatics
  • 9年前
  • APPLICATIONS NOTE

An event-driven approach for studying gene block evolution in bacteria

事件驱动方法研究基因阻止细菌的进化

Motivation: Gene blocks are genes co-located on the chromosome. In many cases, gene blocks are conserved between bacterial species, sometimes as operons, when genes are co-transcribed. The conservation is rarely absolute: gene loss, gain, duplication, block splitting and block fusion are frequently observed. An open question in bacterial molecular evolution is that of the formation and breakup of gene blocks, for which several models have been proposed. These models, however, are not generally applicable to all types of gene blocks, and consequently cannot be used to broadly compare and study gene block evolution. To address this problem, we introduce an event-based method for tracking gene block evolution in bacteria.

Results: We show here that the evolution of gene blocks in proteobacteria can be described by a small set of events. Those include the insertion of genes into, or the splitting of genes out of a gene block, gene loss, and gene duplication. We show how the event-based method of gene block evolution allows us to determine the evolutionary rateand may be used to trace the ancestral states of their formation. We conclude that the event-based method can be used to help us understand the formation of these important bacterial genomic structures.

Availability and implementation: The software is available under GPLv3 license on http://github.com/reamdc1/gene_block_evolution.git. Supplementary online material: http://iddo-friedberg.net/operon-evolution

Contact: i.friedberg@miamioh.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

[详细]

  • Bioinformatics
  • 9年前
  • ORIGINAL PAPER

Learning chromatin states with factorized information criteria

学习染色质状态与因式分解信息标准

Motivation: Recent studies have suggested that both the genome and the genome with epigenetic modifications, the so-called epigenome, play important roles in various biological functions, such as transcription and DNA replication, repair, and recombination. It is well known that specific combinations of histone modifications (e.g. methylations and acetylations) of nucleosomes induce chromatin states that correspond to specific functions of chromatin. Although the advent of next-generation sequencing (NGS) technologies enables measurement of epigenetic information for entire genomes at high-resolution, the variety of chromatin states has not been completely characterized.

Results: In this study, we propose a method to estimate the chromatin states indicated by genome-wide chromatin marks identified by NGS technologies. The proposed method automatically estimates the number of chromatin states and characterize each state on the basis of a hidden Markov model (HMM) in combination with a recently proposed model selection technique, factorized information criteria. The method is expected to provide an unbiased model because it relies on only two adjustable parameters and avoids heuristic procedures as much as possible. Computational experiments with simulated datasets show that our method automatically learns an appropriate model, even in cases where methods that rely on Bayesian information criteria fail to learn the model structures. In addition, we comprehensively compare our method to ChromHMM on three real datasets and show that our method estimates more chromatin states than ChromHMM for those datasets.

Availability and implementation: The details of the characterized chromatin states are available in the Supplementary information. The program is available on request.

Contact: mhamada@waseda.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

[详细]

  • Bioinformatics
  • 9年前
  • ORIGINAL PAPER

SiPAN: simultaneous prediction and alignment of protein-protein interaction networks

西庞:同时蛋白质相互作用网络的预测和调整

Motivation: Network prediction as applied to protein–protein interaction (PPI) networks has received considerable attention within the last decade. Because of the limitations of experimental techniques for interaction detection and network construction, several computational methods for PPI network reconstruction and growth have been suggested. Such methods usually limit the scope of study to a single network, employing data based on genomic context, structure, domain, sequence information or existing network topology. Incorporating multiple species network data for network reconstruction and growth entails the design of novel models encompassing both network reconstruction and network alignment, since the goal of network alignment is to provide functionally orthologous proteins from multiple networks and such orthology information can be used in guiding interolog transfers. However, such an approach raises the classical chicken or egg problem; alignment methods assume error-free networks, whereas network prediction via orthology works affectively if the functionally orthologous proteins are determined with high precision. Thus to resolve this intertwinement, we propose a framework to handle both problems simultaneously, that of SImultaneous Prediction and Alignment of Networks (SiPAN).

Results: We present an algorithm that solves the SiPAN problem in accordance with its simultaneous nature. Bearing the same name as the defined problem itself, the SiPAN algorithm employs state-of-the-art alignment and topology-based interaction confidence construction algorithms, which are used as benchmark methods for comparison purposes as well. To demonstrate the effectiveness of the proposed network reconstruction via SiPAN, we consider two scenarios; one that preserves the network sizes and the other where the network sizes are increased. Through extensive tests on real-world biological data, we show that the network qualities of SiPAN reconstructions are as good as those of original networks and in some cases SiPAN networks are even better, especially for the former scenario. An alternative state-of-the-art network reconstruction algorithm random walk with resistance produces networks considerably worse than the original networks and those reproduced via SiPAN in both cases.

Availability and implementation: Freely available at http://webprs.khas.edu.tr/~cesim/SiPAN.tar.gz.

Contact: cesim@khas.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

[详细]

  • Bioinformatics
  • 9年前
  • ORIGINAL PAPER

Improving small RNA-seq by using a synthetic spike-in set for size-range quality control together with a set for data normalization

提高小RNA序列通过使用合成穗套尺寸范围内的质量控制与一组数据的标准化

There is an increasing interest in complementing RNA-seq experiments with small-RNA (sRNA) expression data to obtain a comprehensive view of a transcriptome. Currently, two main experimental challenges concerning sRNA-seq exist: how to check the size distribution of isolated sRNAs, given the sensitive size-selection steps in the protocol; and how to normalize data between samples, given the low complexity of sRNA types. We here present two separate sets of synthetic RNA spike-ins for monitoring size-selection and for performing data normalization in sRNA-seq. The size-range quality control (SRQC) spike-in set, consisting of 11 oligoribonucleotides (10–70 nucleotides), was tested by intentionally altering the size-selection protocol and verified via several comparative experiments. We demonstrate that the SRQC set is useful to reproducibly track down biases in the size-selection in sRNA-seq. The external reference for data-normalization (ERDN) spike-in set, consisting of 19 oligoribonucleotides, was developed for sample-to-sample normalization in differential-expression analysis of sRNA-seq data. Testing and applying the ERDN set showed that it can reproducibly detect differential expression over a dynamic range of 218. Hence, biological variation in sRNA composition and content between samples is preserved while technical variation is effectively minimized. Together, both spike-in sets can significantly improve the technical reproducibility of sRNA-seq.

[详细]

  • Nucleic Acids Research
  • 9年前
  • Methods Online

Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery

在ht-selex突变景观的大型分析提高了核酸适配体的发现

High-Throughput (HT) SELEX combines SELEX (Systematic Evolution of Ligands by EXponential Enrichment), a method for aptamer discovery, with massively parallel sequencing technologies. This emerging technology provides data for a global analysis of the selection process and for simultaneous discovery of a large number of candidates but currently lacks dedicated computational approaches for their analysis. To close this gap, we developed novel in-silico methods to analyze HT-SELEX data and utilized them to study the emergence of polymerase errors during HT-SELEX. Rather than considering these errors as a nuisance, we demonstrated their utility for guiding aptamer discovery. Our approach builds on two main advancements in aptamer analysis: AptaMut—a novel technique allowing for the identification of polymerase errors conferring an improved binding affinity relative to the ‘parent’ sequence and AptaCluster—an aptamer clustering algorithm which is to our best knowledge, the only currently available tool capable of efficiently clustering entire aptamer pools. We applied these methods to an HT-SELEX experiment developing aptamers against Interleukin 10 receptor alpha chain (IL-10RA) and experimentally confirmed our predictions thus validating our computational methods.

[详细]

  • Nucleic Acids Research
  • 9年前
  • Computational Biology

Identification of protein coding regions in RNA transcripts

在RNA转录的蛋白质编码区识别

Massive parallel sequencing of RNA transcripts by next-generation technology (RNA-Seq) generates critically important data for eukaryotic gene discovery. Gene finding in transcripts can be done by statistical (alignment-free) as well as by alignment-based methods. We describe a new tool, GeneMarkS-T, for ab initio identification of protein-coding regions in RNA transcripts. The algorithm parameters are estimated by unsupervised training which makes unnecessary manually curated preparation of training sets. We demonstrate that (i) the unsupervised training is robust with respect to the presence of transcripts assembly errors and (ii) the accuracy of GeneMarkS-T in identifying protein-coding regions and, particularly, in predicting translation initiation sites in modelled as well as in assembled transcripts compares favourably to other existing methods.

[详细]

  • Nucleic Acids Research
  • 9年前
  • Methods Online

Paternal Transmission of a Secondary Symbiont during Mating in the Viviparous Tsetse Fly

在胎生的采采蝇交配一次生共生父系遗传

Sodalis glossinidius, a maternally inherited secondary symbiont of the tsetse fly, is a bacterium in the early/intermediate state of the transition toward symbiosis, representing an important model for investigating establishment and evolution of insect–bacteria symbiosis. The absence of phylogenetic congruence in tsetse-Sodalis coevolution and the existence of Sodalis genotypic diversity in field flies are suggestive for a horizontal transmission route. However, to date no natural mechanism for the horizontal transfer of this symbiont has been identified. Using novel methodologies for the stable fluorescent-labeling and introduction of modified Sodalis in tsetse flies, we unambiguously show that male-borne Sodalis is 1) horizontally transferred to females during mating and 2) subsequently vertically transmitted to the progeny, that is, paternal transmission. This mixed mode of transmission has major consequences regarding Sodalis’ genome evolution as it can lead to coinfections creating opportunities for lateral gene transfer which in turn could affect the interaction with the tsetse host.

[详细]

  • Molecular Biology and Evolution
  • 9年前
  • Letter