RNA editing by T7 RNA polymerase bypasses InDel mutations causing unexpected phenotypic changes

T7 RNA聚合酶的RNA编辑绕过缺失突变,造成意想不到的表型变化

DNA-dependent T7 RNA polymerase (T7 RNAP) is the most powerful tool for both gene expression and in vitro transcription. By using a Next Generation Sequencing (NGS) approach we have analyzed the polymorphism of a T7 RNAP-generated mRNA pool of the mboIIM2 gene. We find that the enzyme displays a relatively high level of template-dependent transcriptional infidelity. The nucleotide misincorporations and multiple insertions in A/T-rich tracts of homopolymers in mRNA (0.20 and 0.089%, respectively) cause epigenetic effects with significant impact on gene expression that is disproportionally high to their frequency of appearance. The sequence-dependent rescue of single and even double InDel frameshifting mutants and wild-type phenotype recovery is observed as a result. As a consequence, a heterogeneous pool of functional and non-functional proteins of almost the same molecular mass is produced where the proteins are indistinguishable from each other upon ordinary analysis. We suggest that transcriptional infidelity as a general feature of the most effective RNAPs may serve to repair and/or modify a protein function, thus increasing the repertoire of phenotypic variants, which in turn has a high evolutionary potential.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Gene regulation, Chromatin and Epigenetics

Nucleosomes undergo slow spontaneous gaping

核小体进行缓慢张开

In eukaryotes, DNA is packaged into a basic unit, the nucleosome which consists of 147 bp of DNA wrapped around a histone octamer composed of two copies each of the histones H2A, H2B, H3 and H4. Nucleosome structures are diverse not only by histone variants, histone modifications, histone composition but also through accommodating different conformational states such as DNA breathing and dimer splitting. Variation in nucleosome structures allows it to perform a variety of cellular functions. Here, we identified a novel spontaneous conformational switching of nucleosomes under physiological conditions using single-molecule FRET. Using FRET probes placed at various positions on the nucleosomal DNA to monitor conformation of the nucleosome over a long period of time (30–60 min) at various ionic conditions, we identified conformational changes we refer to as nucleosome gaping. Gaping transitions are distinct from nucleosome breathing, sliding or tightening. Gaping modes switch along the direction normal to the DNA plane through about 5–10 angstroms and at minutes (1–10 min) time scale. This conformational transition, which has not been observed previously, may be potentially important for enzymatic reactions/transactions on nucleosomal substrate and the formation of multiple compression forms of chromatin fibers.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Gene regulation, Chromatin and Epigenetics

Uncoupling histone turnover from transcription-associated histone H3 modifications

解偶联蛋白的营业额从转录相关的组蛋白H3修改

Transcription in eukaryotes is associated with two major changes in chromatin organization. Firstly, nucleosomal histones are continuously replaced by new histones, an event that in yeast occurs predominantly at transcriptionally active promoters. Secondly, histones become modified post-translationally at specific lysine residues. Some modifications, including histone H3 trimethylation at lysine 4 (H3K4me3) and acetylation at lysines 9 (H3K9ac) and 14 (H3K14ac), are specifically enriched at active promoters where histones exchange, suggesting a possible causal relationship. Other modifications accumulate within transcribed regions and one of them, H3K36me3, is thought to prevent histone exchange. Here we explored the relationship between these four H3 modifications and histone turnover at a few selected genes. Using lysine-to-arginine mutants and a histone exchange assay, we found that none of these modifications plays a major role in either promoting or preventing histone turnover. Unexpectedly, mutation of H3K56, whose acetylation occurs prior to chromatin incorporation, had an effect only when introduced into the nucleosomal histone. Furthermore, we used various genetic approaches to show that histone turnover can be experimentally altered with no major consequence on the H3 modifications tested. Together, these results suggest that transcription-associated histone turnover and H3 modification are two correlating but largely independent events.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Gene regulation, Chromatin and Epigenetics

Gadd45a promotes DNA demethylation through TDG

Gadd45a促进DNA去甲基化通过TDG

Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)—initiated oxidative demethylation. The connection of Gadd45a with oxidative demethylation is evidenced by the enhanced activation of a methylated reporter gene in HEK293T cells expressing Gadd45a in combination with catalytically active TDG and Tet. Gadd45a interacts with TDG physically and increases the removal of 5fC and 5caC from genomic and transfected plasmid DNA by TDG. Knockout of both Gadd45a and Gadd45b from mouse ES cells leads to hypermethylation of specific genomic loci most of which are also targets of TDG and show 5fC enrichment in TDG-deficient cells. These observations indicate that the demethylation effect of Gadd45a is mediated by TDG activity. This finding thus unites Gadd45a with the recently defined Tet-initiated demethylation pathway.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Gene regulation, Chromatin and Epigenetics

Integrating motif, DNA accessibility and gene expression data to build regulatory maps in an organism

结合基序,DNA和基因表达数据的可访问性有机体中建立监管地图

Characterization of cell type specific regulatory networks and elements is a major challenge in genomics, and emerging strategies frequently employ high-throughput genome-wide assays of transcription factor (TF) to DNA binding, histone modifications or chromatin state. However, these experiments remain too difficult/expensive for many laboratories to apply comprehensively to their system of interest. Here, we explore the potential of elucidating regulatory systems in varied cell types using computational techniques that rely on only data of gene expression, low-resolution chromatin accessibility, and TF–DNA binding specificities (‘motifs’). We show that static computational motif scans overlaid with chromatin accessibility data reasonably approximate experimentally measured TF–DNA binding. We demonstrate that predicted binding profiles and expression patterns of hundreds of TFs are sufficient to identify major regulators of ~200 spatiotemporal expression domains in the Drosophila embryo. We are then able to learn reliable statistical models of enhancer activity for over 70 expression domains and apply those models to annotate domain specific enhancers genome-wide. Throughout this work, we apply our motif and accessibility based approach to comprehensively characterize the regulatory network of fruitfly embryonic development and show that the accuracy of our computational method compares favorably to approaches that rely on data from many experimental assays.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Gene regulation, Chromatin and Epigenetics

The nucleoporin Mlp2 is involved in chromosomal distribution during mitosis in trypanosomatids

nucleoporin mlp2是有丝分裂过程中染色体分布在锥虫

Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics and intra-nuclear mitotic events. Here, we determined the cellular localization of the nucleoporin Mlp2 in the ‘divergent’ eukaryotes Leishmania major and Trypanosoma brucei. In both protozoa, Mlp2 displayed an atypical localization for a nucleoporin, essentially intranuclear, and preferentially in the periphery of the nucleolus during interphase; moreover, it relocated at the mitotic spindle poles during mitosis. In T. brucei, where most centromeres have been identified, TbMlp2 was found adjacent to the centromeric sequences, as well as to a recently described unconventional kinetochore protein, in the periphery of the nucleolus, during interphase and from the end of anaphase onwards. TbMlp2 and the centromeres/kinetochores exhibited a differential migration towards the poles during mitosis. RNAi knockdown of TbMlp2 disrupted the mitotic distribution of chromosomes, leading to a surprisingly well-tolerated aneuploidy. In addition, diploidy was restored in a complementation assay where LmMlp2, the orthologue of TbMlp2 in Leishmania, was expressed in TbMlp2-RNAi-knockdown parasites. Taken together, our results demonstrate that Mlp2 is involved in the distribution of chromosomes during mitosis in trypanosomatids.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Genome integrity, repair and replication

Disruption of PARP1 function inhibits base excision repair of a sub-set of DNA lesions

通过parp1干扰抑制功能的一个子集的DNA碱基切除修复

The repair of endogenously induced DNA damage is essential to maintain genomic integrity. It has been shown that XRCC1 and PARP1 are involved in the repair of base lesions and SSBs, although the exact mode of action has yet to be determined. Here we show that XRCC1 is involved in the repair of base lesions and SSBs independent of the cell cycle. However, the rate of repair of damage requiring XRCC1 does reflect the damage complexity. The repair of induced DNA damage occurs by PARP1-dependent and PARP1-independent sub-pathways of BER. It is suggested that the repair of SSBs and purine base damage is by a sub-pathway of BER that requires both XRCC1 and PARP1. Repair of pyrimidine base damage may require XRCC1 but does not require PARP1 activity. Therefore, although BER of simple lesions occurs rapidly, pathway choice and the involvement of PARP1 are highly dependent on the types of lesion induced.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Genome integrity, repair and replication

The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures

尼尔从端粒和启动子DNA糖基化酶清除氧化鸟嘌呤四结构病变

G-quadruplex is a four-stranded G-rich DNA structure that is highly susceptible to oxidation. Despite the important roles that G-quadruplexes play in telomere biology and gene transcription, neither the impact of guanine lesions on the stability of quadruplexes nor their repair are well understood. Here, we show that the oxidized guanine lesions 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) reduce the thermostability and alter the folding of telomeric quadruplexes in a location-dependent manner. Also, the NEIL1 and NEIL3 DNA glycosylases can remove hydantoin lesions but none of the glycosylases, including OGG1, are able to remove 8-oxoG from telomeric quadruplexes. Interestingly, a hydantoin lesion at the site most prone to oxidation in quadruplex DNA is not efficiently removed by NEIL1 or NEIL3. However, NEIL1, NEIL2 and NEIL3 remove hydantoins from telomeric quadruplexes formed by five TTAGGG repeats much more rapidly than the commonly studied four-repeat quadruplex structures. We also show that APE1 cleaves furan in selected positions in Na+-coordinated telomeric quadruplexes. In promoter G-quadruplex DNA, the NEIL glycosylases primarily remove Gh from Na+-coordinated antiparallel quadruplexes but not K+-coordinated parallel quadruplexes containing VEGF or c-MYC promoter sequences. Thus, the NEIL DNA glycosylases may be involved in both telomere maintenance and in gene regulation.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Genome integrity, repair and replication

Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis

配体的相互作用涉及hop2-mnd1和DMC1 RAD51同源重组和DNA修复和XX卵巢发育不全的意义

The evolutionarily conserved Hop2-Mnd1 complex is a key cofactor for the meiosis-specific recombinase Dmc1. However, emerging evidence has revealed that Hop2-Mnd1 is expressed in somatic tissues, primary human fibroblasts and cell lines, and that it functions in conjunction with the Rad51 recombinase to repair damaged telomeres via the alternate lengthening of telomeres mechanism. Here, we reveal how distinct DNA-binding activities of Hop2-Mnd1 mediate the stabilization of the RAD51-ssDNA presynaptic filament or stimulate the homologous DNA pairing reaction. We have also endeavored to define the interface that governs the assembly of the higher order complex of Hop2-Mnd1 with RAD51. Unexpectedly, we find that ATP enhances the interaction between Hop2-Mnd1 and RAD51, and that both Hop2 and Mnd1 are involved in RAD51 interaction via their C-terminal regions. Importantly, mutations introduced into these Hop2 and Mnd1 domains, including the HOP2 p.del201Glu mutation present in a patient of XX ovarian dysgenesis, diminish the association and functional synergy of Hop2-Mnd1 with both RAD51 and DMC1. Our findings help delineate the intricate manner in which Hop2-Mnd1 engages and functions with RAD51 and DMC1 in mammalian cells and speak to the possible cause of XX ovarian dysgenesis.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Genome integrity, repair and replication

Differences in genome-wide repeat sequence instability conferred by proofreading and mismatch repair defects

在全基因组重复序列不稳定性的校对和错配修复缺陷所赋予的差异

Mutation rates are used to calibrate molecular clocks and to link genetic variants with human disease. However, mutation rates are not uniform across each eukaryotic genome. Rates for insertion/deletion (indel) mutations have been found to vary widely when examined in vitro and at specific loci in vivo. Here, we report the genome-wide rates of formation and repair of indels made during replication of yeast nuclear DNA. Using over 6000 indels accumulated in four mismatch repair (MMR) defective strains, and statistical corrections for false negatives, we find that indel rates increase by 100 000-fold with increasing homonucleotide run length, representing the greatest effect on replication fidelity of any known genomic parameter. Nonetheless, long genomic homopolymer runs are overrepresented relative to random chance, implying positive selection. Proofreading defects in the replicative polymerases selectively increase indel rates in short repetitive tracts, likely reflecting the distance over which Pols and interact with duplex DNA upstream of the polymerase active site. In contrast, MMR defects hugely increase indel mutagenesis in long repetitive sequences. Because repetitive sequences are not uniformly distributed among genomic functional elements, the quantitatively different consequences on genome-wide repeat sequence instability conferred by defects in proofreading and MMR have important biological implications.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Genome integrity, repair and replication

A functional screen identifies miRNAs that inhibit DNA repair and sensitize prostate cancer cells to ionizing radiation

屏幕识别功能,抑制DNA修复和敏感的前列腺癌细胞对电离辐射的miRNAs

MicroRNAs (miRNAs) have been implicated in DNA repair pathways through transcriptional responses to DNA damaging agents or through predicted miRNA regulation of DNA repair genes. We hypothesized that additional DNA damage regulating miRNAs could be identified by screening a library of 810 miRNA mimetics for the ability to alter cellular sensitivity to ionizing radiation (IR). A prostate cancer Metridia luciferase cell model was applied to examine the effects of individual miRNAs on IR sensitivity. A large percentage of miRNA mimetics were found to increase cellular sensitivity to IR, while a smaller percentage were protective. Two of the most potent IR sensitizing miRNAs, miR-890 and miR-744–3p, significantly delayed IR induced DNA damage repair. Both miRNAs inhibited the expression of multiple components of DNA damage response and DNA repair. miR-890 directly targeted MAD2L2, as well as WEE1 and XPC, where miR-744–3p directly targeted RAD23B. Knock-down of individual miR-890 targets by siRNA was not sufficient to ablate miR-890 radiosensitization, signifying that miR-890 functions by regulating multiple DNA repair genes. Intratumoral delivery of miR-890 mimetics prior to IR therapy significantly enhanced IR therapeutic efficacy. These results reveal novel miRNA regulation of DNA repair and identify miR-890 as a potent IR sensitizing agent.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Genome integrity, repair and replication

Molecular crowding enhances facilitated diffusion of two human DNA glycosylases

分子拥挤提高方便两个人类DNA糖基化酶扩散

Intracellular space is at a premium due to the high concentrations of biomolecules and is expected to have a fundamental effect on how large macromolecules move in the cell. Here, we report that crowded solutions promote intramolecular DNA translocation by two human DNA repair glycosylases. The crowding effect increases both the efficiency and average distance of DNA chain translocation by hindering escape of the enzymes to bulk solution. The increased contact time with the DNA chain provides for redundant damage patrolling within individual DNA chains at the expense of slowing the overall rate of damaged base removal from a population of molecules. The significant biological implication is that a crowded cellular environment could influence the mechanism of damage recognition as much as any property of the enzyme or DNA.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Genome integrity, repair and replication

Are mutagenic non D-loop direct repeat motifs in mitochondrial DNA under a negative selection pressure?

是非直接重复序列突变的线粒体DNA D-loop区的负选择压力下?

Non D-loop direct repeats (DRs) in mitochondrial DNA (mtDNA) have been commonly implicated in the mutagenesis of mtDNA deletions associated with neuromuscular disease and ageing. Further, these DRs have been hypothesized to put a constraint on the lifespan of mammals and are under a negative selection pressure. Using a compendium of 294 mammalian mtDNA, we re-examined the relationship between species lifespan and the mutagenicity of such DRs. Contradicting the prevailing hypotheses, we found no significant evidence that long-lived mammals possess fewer mutagenic DRs than short-lived mammals. By comparing DR counts in human mtDNA with those in selectively randomized sequences, we also showed that the number of DRs in human mtDNA is primarily determined by global mtDNA properties, such as the bias in synonymous codon usage (SCU) and nucleotide composition. We found that SCU bias in mtDNA positively correlates with DR counts, where repeated usage of a subset of codons leads to more frequent DR occurrences. While bias in SCU and nucleotide composition has been attributed to nucleotide mutational bias, mammalian mtDNA still exhibit higher SCU bias and DR counts than expected from such mutational bias, suggesting a lack of negative selection against non D-loop DRs.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Genomics

Suppression of the E. coli SOS response by dNTP pool changes

对大肠杆菌SOS反应的dNTP池变化的抑制

The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30+-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Molecular Biology

Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana

热诱导核糖体mRNA的翻译合作暂停触发衰变拟南芥

The reprogramming of gene expression in heat stress is a key determinant to organism survival. Gene expression is downregulated through translation initiation inhibition and release of free mRNPs that are rapidly degraded or stored. In mammals, heat also triggers 5'-ribosome pausing preferentially on transcripts coding for HSC/HSP70 chaperone targets, but the impact of such phenomenon on mRNA fate remains unknown. Here, we provide evidence that, in Arabidopsis thaliana, heat provokes 5'-ribosome pausing leading to the XRN4-mediated 5'-directed decay of translating mRNAs. We also show that hindering HSC/HSP70 activity at 20°C recapitulates heat effects by inducing ribosome pausing and co-translational mRNA turnover. Strikingly, co-translational decay targets encode proteins with high HSC/HSP70 binding scores and hydrophobic N-termini, two characteristics that were previously observed for transcripts most prone to pausing in animals. This work suggests for the first time that stress-induced variation of translation elongation rate is an evolutionarily conserved process leading to the polysomal degradation of thousands of ‘non-aberrant’ mRNAs.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Molecular Biology

Active displacement of RecA filaments by UvrD translocase activity

由UvrD转位酶活性的RecA丝主动位移

The UvrD helicase has been implicated in the disassembly of RecA nucleoprotein filaments in vivo and in vitro. We demonstrate that UvrD utilizes an active mechanism to remove RecA from the DNA. Efficient RecA removal depends on the availability of DNA binding sites for UvrD and/or the accessibility of the RecA filament ends. The removal of RecA from DNA also requires ATP hydrolysis by the UvrD helicase but not by RecA protein. The RecA-removal activity of UvrD is slowed by RecA variants with enhanced DNA-binding properties. The ATPase rate of UvrD during RecA removal is much slower than the ATPase activity of UvrD when it is functioning either as a translocase or a helicase on DNA in the absence of RecA. Thus, in this context UvrD may operate in a specialized disassembly mode.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Nucleic Acid Enzymes

Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N6-adenine DNA methyltransferases of Neisseria meningitidis

moda11的特异性,moda12和modd1后生调节N6腺嘌呤DNA甲基转移酶的脑膜炎奈瑟菌

Phase variation (random ON/OFF switching) of gene expression is a common feature of host-adapted pathogenic bacteria. Phase variably expressed N6-adenine DNA methyltransferases (Mod) alter global methylation patterns resulting in changes in gene expression. These systems constitute phase variable regulons called phasevarions. Neisseria meningitidis phasevarions regulate genes including virulence factors and vaccine candidates, and alter phenotypes including antibiotic resistance. The target site recognized by these Type III N6-adenine DNA methyltransferases is not known. Single molecule, real-time (SMRT) methylome analysis was used to identify the recognition site for three key N. meningitidis methyltransferases: ModA11 (exemplified by M.NmeMC58I) (5'-CGYm6AG-3'), ModA12 (exemplified by M.Nme77I, M.Nme18I and M.Nme579II) (5'-ACm6ACC-3') and ModD1 (exemplified by M.Nme579I) (5'-CCm6AGC-3'). Restriction inhibition assays and mutagenesis confirmed the SMRT methylome analysis. The ModA11 site is complex and atypical and is dependent on the type of pyrimidine at the central position, in combination with the bases flanking the core recognition sequence 5'-CGYm6AG-3'. The observed efficiency of methylation in the modA11 strain (MC58) genome ranged from 4.6% at 5'-GCGCm6AGG-3' sites, to 100% at 5'-ACGTm6AGG-3' sites. Analysis of the distribution of modified sites in the respective genomes shows many cases of association with intergenic regions of genes with altered expression due to phasevarion switching.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Nucleic Acid Enzymes

Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit

亚基组成拟南芥RNA聚合酶I和III显示聚合酶I和pol的C53亚基亚基和其他形式AC40具体形式

Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA polymerases I and III (abbreviated as Pol I and Pol III), the first analysis of their physical compositions in plants. In all eukaryotes examined to date, AC40 and AC19 subunits are common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes. Surprisingly, A. thaliana and related species express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with the functional divergence of Pol I- and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit and either protein can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the 12 subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Nucleic Acid Enzymes

IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis

islandviewer 3:更灵活的,互动的基因组岛发现,可视化和分析

IslandViewer (http://pathogenomics.sfu.ca/islandviewer) is a widely used web-based resource for the prediction and analysis of genomic islands (GIs) in bacterial and archaeal genomes. GIs are clusters of genes of probable horizontal origin, and are of high interest since they disproportionately encode genes involved in medically and environmentally important adaptations, including antimicrobial resistance and virulence. We now report a major new release of IslandViewer, since the last release in 2013. IslandViewer 3 incorporates a completely new genome visualization tool, IslandPlot, enabling for the first time interactive genome analysis and gene search capabilities using synchronized circular, horizontal and vertical genome views. In addition, more curated virulence factors and antimicrobial resistance genes have been incorporated, and homologs of these genes identified in closely related genomes using strict filters. Pathogen-associated genes have been re-calculated for all pre-computed complete genomes. For user-uploaded genomes to be analysed, IslandViewer 3 can also now handle incomplete genomes, with an improved queuing system on compute nodes to handle user demand. Overall, IslandViewer 3 represents a significant new version of this GI analysis software, with features that may make it more broadly useful for general microbial genome analysis and visualization.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Web Server Issue

ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks

芯片2:整合多种组学数据构建基因调控网络

Transcription factors (TFs) play an important role in gene regulation. The interconnections among TFs, chromatin interactions, epigenetic marks and cis-regulatory elements form a complex gene transcription apparatus. Our previous work, ChIP-Array, combined TF binding and transcriptome data to construct gene regulatory networks (GRNs). Here we present an enhanced version, ChIP-Array 2, to integrate additional types of omics data including long-range chromatin interaction, open chromatin region and histone modification data to dissect more comprehensive GRNs involving diverse regulatory components. Moreover, we substantially extended our motif database for human, mouse, rat, fruit fly, worm, yeast and Arabidopsis, and curated large amount of omics data for users to select as input or backend support. With ChIP-Array 2, we compiled a library containing regulatory networks of 18 TFs/chromatin modifiers in mouse embryonic stem cell (mESC). The web server and the mESC library are publicly free and accessible at http://jjwanglab.org/chip-array.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Web Server Issue

Signal integration by the CYP1A1 promoter -- a quantitative study

通过CYP1A1启动子信号整合——定量研究

Genes involved in detoxification of foreign compounds exhibit complex spatiotemporal expression patterns in liver. Cytochrome P450 1A1 (CYP1A1), for example, is restricted to the pericentral region of liver lobules in response to the interplay between aryl hydrocarbon receptor (AhR) and Wnt/β-catenin signaling pathways. However, the mechanisms by which the two pathways orchestrate gene expression are still poorly understood. With the help of 29 mutant constructs of the human CYP1A1 promoter and a mathematical model that combines Wnt/β-catenin and AhR signaling with the statistical mechanics of the promoter, we systematically quantified the regulatory influence of different transcription factor binding sites on gene induction within the promoter. The model unveils how different binding sites cooperate and how they establish the promoter logic; it quantitatively predicts two-dimensional stimulus-response curves. Furthermore, it shows that crosstalk between Wnt/β-catenin and AhR signaling is crucial to understand the complex zonated expression patterns found in liver lobules. This study exemplifies how statistical mechanical modeling together with combinatorial reporter assays has the capacity to disentangle the promoter logic that establishes physiological gene expression patterns.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Computational Biology

Pathways with PathWhiz

pathwhiz通路

PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Web Server Issue

Localize.pytom: a modern webserver for cryo-electron tomography

localize.pytom:现代低温电子断层扫描服务器

Localize.pytom, available through http://localize.pytom.org is a webserver for the localize module in the PyTom package. It is a free website and open to all users and there is no login requirement. The server accepts tomograms as they are imaged and reconstructed by Cryo-Electron Tomography (CET) and returns densities and coordinates of candidate-macromolecules in the tomogram. Localization of macromolecules in cryo-electron tomograms is one of the key procedures to unravel structural features of imaged macromolecules. Positions of localized molecules are further used for structural analysis by single particle procedures such as fine alignment, averaging and classification. Accurate localization can be furthermore used to generate molecular atlases of whole cells. Localization uses a cross-correlation-based score and requires a reference volume as input. A reference can either be a previously detected macromolecular structure or extrapolated on the server from a specific PDB chain. Users have the option to use either coarse or fine angular sampling strategies based on uniformly distributed rotations and to accurately compensate for the CET common ‘Missing Wedge’ artefact during sampling. After completion, all candidate macromolecules cut out from the tomogram are available for download. Their coordinates are stored and available in XML format, which can be easily integrated into successive analysis steps in other software. A pre-computed average of the first one hundred macromolecules is also available for immediate download, and the user has the option to further analyse the average, based on the detected score distribution in a novel web-density viewer.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Web Server Issue

Intermolecular 'cross-torque': the N4-cytosine propargyl residue is rotated to the 'CH'-edge as a result of Watson-Crick interaction

分子间的横向扭矩:N4胞嘧啶炔残留旋转至“ch”边由于沃森-克里克互动

Propargyl groups are attractive functional groups for labeling purposes, as they allow CuAAC-mediated bioconjugation. Their size minimally exceeds that of a methyl group, the latter being frequent in natural nucleotide modifications. To understand under which circumstances propargyl-containing oligodeoxynucleotides preserve base pairing, we focused on the exocyclic amine of cytidine. Residues attached to the exocyclic N4 may orient away from or toward the Watson–Crick face, ensuing dramatic alteration of base pairing properties. ROESY-NMR experiments suggest a uniform orientation toward the Watson–Crick face of N4-propargyl residues in derivatives of both deoxycytidine and 5-methyl-deoxycytidine. In oligodeoxynucleotides, however, UV-melting indicated that N4-propargyl-deoxycytidine undergoes standard base pairing. This implies a rotation of the propargyl moiety toward the ‘CH’-edge as a result of base pairing on the Watson–Crick face. In oligonucleotides containing the corresponding 5-methyl-deoxycytidine derivative, dramatically reduced melting temperatures indicate impaired Watson–Crick base pairing. This was attributed to a steric clash of the propargyl moiety with the 5-methyl group, which prevents back rotation to the ‘CH’-edge, consequently preventing Watson–Crick geometry. Our results emphasize the tendency of an opposing nucleic acid strand to mechanically rotate single N4-substituents to make way for Watson–Crick base pairing, providing no steric hindrance is present on the ‘CH’-edge.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Chemical Biology and Nucleic Acid Chemistry