The Plastid Genome of the Cryptomonad Teleaulax amphioxeia

的teleaulax amphioxeia隐藻的叶绿体基因组

by Jong Im Kim, Hwan Su Yoon, Gangman Yi, Hyung Seop Kim, Wonho Yih, Woongghi Shin

Teleaulax amphioxeia is a photosynthetic unicellular cryptophyte alga that is distributed throughout marine habitats worldwide. This alga is an important plastid donor to the dinoflagellate Dinophysis caudata through the ciliate Mesodinium rubrum in the marine food web. To better understand the genomic characteristics of T. amphioxeia, we have sequenced and analyzed its plastid genome. The plastid genome sequence of T. amphioxeia is similar to that of Rhodomonas salina, and they share significant synteny. This sequence exhibits less similarity to that of Guillardia theta, the representative plastid genome of photosynthetic cryptophytes. The gene content and order of the three photosynthetic cryptomonad plastid genomes studied is highly conserved. The plastid genome of T. amphioxeia is composed of 129,772 bp and includes 143 protein-coding genes, 2 rRNA operons and 30 tRNA sequences. The DNA polymerase III gene (dnaX) was most likely acquired via lateral gene transfer (LGT) from a firmicute bacterium, identical to what occurred in R. salina. On the other hand, the psbN gene was independently encoded by the plastid genome without a reverse transcriptase gene as an intron. To clarify the phylogenetic relationships of the algae with red-algal derived plastids, phylogenetic analyses of 32 taxa were performed, including three previously sequenced cryptophyte plastid genomes containing 93 protein-coding genes. The stramenopiles were found to have branched out from the Chromista taxa (cryptophytes, haptophytes, and stramenopiles), while the cryptophytes and haptophytes were consistently grouped into sister relationships with high resolution.

[详细]

  • PloS one
  • 10年前

Novel and Stress Relevant EST Derived SSR Markers Developed and Validated in Peanut

小说与应力相关EST-SSR标记的开发和验证的花生

by Tejas C. Bosamia, Gyan P. Mishra, Radhakrishnan Thankappan, Jentilal R. Dobaria

With the aim to increase the number of functional markers in resource poor crop like cultivated peanut (Arachis hypogaea), large numbers of available expressed sequence tags (ESTs) in the public databases, were employed for the development of novel EST derived simple sequence repeat (SSR) markers. From 16424 unigenes, 2784 (16.95%) SSRs containing unigenes having 3373 SSR motifs were identified. Of these, 2027 (72.81%) sequences were annotated and 4124 gene ontology terms were assigned. Among different SSR motif-classes, tri-nucleotide repeats (33.86%) were the most abundant followed by di-nucleotide repeats (27.51%) while AG/CT (20.7%) and AAG/CTT (13.25%) were the most abundant repeat-motifs. A total of 2456 EST-SSR novel primer pairs were designed, of which 366 unigenes having relevance to various stresses and other functions, were PCR validated using a set of 11 diverse peanut genotypes. Of these, 340 (92.62%) primer pairs yielded clear and scorable PCR products and 39 (10.66%) primer pairs exhibited polymorphisms. Overall, the number of alleles per marker ranged from 1-12 with an average of 3.77 and the PIC ranged from 0.028 to 0.375 with an average of 0.325. The identified EST-SSRs not only enriched the existing molecular markers kitty, but would also facilitate the targeted research in marker-trait association for various stresses, inter-specific studies and genetic diversity analysis in peanut.

[详细]

  • PloS one
  • 10年前

Effective Optimization of Antibody Affinity by Phage Display Integrated with High-Throughput DNA Synthesis and Sequencing Technologies

有效的优化抗体亲和力的噬菌体结合高通量DNA合成和测序技术

by Dongmei Hu, Siyi Hu, Wen Wan, Man Xu, Ruikai Du, Wei Zhao, Xiaolian Gao, Jing Liu, Haiyan Liu, Jiong Hong

Phage display technology has been widely used for antibody affinity maturation for decades. The limited library sequence diversity together with excessive redundancy and labour-consuming procedure for candidate identification are two major obstacles to widespread adoption of this technology. We hereby describe a novel library generation and screening approach to address the problems. The approach started with the targeted diversification of multiple complementarity determining regions (CDRs) of a humanized anti-ErbB2 antibody, HuA21, with a small perturbation mutagenesis strategy. A combination of three degenerate codons, NWG, NWC, and NSG, were chosen for amino acid saturation mutagenesis without introducing cysteine and stop residues. In total, 7,749 degenerate oligonucleotides were synthesized on two microchips and released to construct five single-chain antibody fragment (scFv) gene libraries with 4 x 106 DNA sequences. Deep sequencing of the unselected and selected phage libraries using the Illumina platform allowed for an in-depth evaluation of the enrichment landscapes in CDR sequences and amino acid substitutions. Potent candidates were identified according to their high frequencies using NGS analysis, by-passing the need for the primary screening of target-binding clones. Furthermore, a subsequent library by recombination of the 10 most abundant variants from four CDRs was constructed and screened, and a mutant with 158-fold increased affinity (Kd = 25.5 pM) was obtained. These results suggest the potential application of the developed methodology for optimizing the binding properties of other antibodies and biomolecules.

[详细]

  • PloS one
  • 10年前

Large-Scale Evolutionary Analysis of Genes and Supergene Clusters from Terpenoid Modular Pathways Provides Insights into Metabolic Diversification in Flowering Plants

大规模的演化分析基因和表生集群模块化途径在开花植物萜类代谢的多样化提供了见解

by Johannes A. Hofberger, Aldana M. Ramirez, Erik van den Bergh, Xinguang Zhu, Harro J. Bouwmeester, Robert C. Schuurink, M. Eric Schranz

An important component of plant evolution is the plethora of pathways producing more than 200,000 biochemically diverse specialized metabolites with pharmacological, nutritional and ecological significance. To unravel dynamics underlying metabolic diversification, it is critical to determine lineage-specific gene family expansion in a phylogenomics framework. However, robust functional annotation is often only available for core enzymes catalyzing committed reaction steps within few model systems. In a genome informatics approach, we extracted information from early-draft gene-space assemblies and non-redundant transcriptomes to identify protein families involved in isoprenoid biosynthesis. Isoprenoids comprise terpenoids with various roles in plant-environment interaction, such as pollinator attraction or pathogen defense. Combining lines of evidence provided by synteny, sequence homology and Hidden-Markov-Modelling, we screened 17 genomes including 12 major crops and found evidence for 1,904 proteins associated with terpenoid biosynthesis. Our terpenoid genes set contains evidence for 840 core terpene-synthases and 338 triterpene-specific synthases. We further identified 190 prenyltransferases, 39 isopentenyl-diphosphate isomerases as well as 278 and 219 proteins involved in mevalonate and methylerithrol pathways, respectively. Assessing the impact of gene and genome duplication to lineage-specific terpenoid pathway expansion, we illustrated key events underlying terpenoid metabolic diversification within 250 million years of flowering plant radiation. By quantifying Angiosperm-wide versatility and phylogenetic relationships of pleiotropic gene families in terpenoid modular pathways, our analysis offers significant insight into evolutionary dynamics underlying diversification of plant secondary metabolism. Furthermore, our data provide a blueprint for future efforts to identify and more rapidly clone terpenoid biosynthetic genes from any plant species.

[详细]

  • PloS one
  • 10年前

The Evolutionary History of MAPL (Mitochondria-Associated Protein Ligase) and Other Eukaryotic BAM/GIDE Domain Proteins

枫的进化史(线粒体相关蛋白连接酶)和其他真核生物的BAM /纪德域蛋白

by Jeremy G. Wideman, Blake P. Moore

MAPL (mitochondria-associated protein ligase, also called MULAN/GIDE/MUL1) is a multifunctional mitochondrial outer membrane protein found in human cells that contains a unique BAM (beside a membrane) domain and a C-terminal RING-finger domain. MAPL has been implicated in several processes that occur in animal cells such as NF-kB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. Previous studies demonstrated that the BAM domain is present in diverse organisms in which most of these processes do not occur, including plants, archaea, and bacteria. Thus the conserved function of MAPL and its BAM domain remains an open question. In order to gain insight into its conserved function, we investigated the evolutionary origins of MAPL by searching for homologues in predicted proteomes of diverse eukaryotes. We show that MAPL proteins with a conserved BAM-RING architecture are present in most animals, protists closely related to animals, a single species of fungus, and several multicellular plants and related green algae. Phylogenetic analysis demonstrated that eukaryotic MAPL proteins originate from a common ancestor and not from independent horizontal gene transfers from bacteria. We also determined that two independent duplications of MAPL occurred, one at the base of multicellular plants and another at the base of vertebrates. Although no other eukaryote genome examined contained a verifiable MAPL orthologue, BAM domain-containing proteins were identified in the protists Bigelowiella natans and Ectocarpus siliculosis. Phylogenetic analyses demonstrated that these proteins are more closely related to prokaryotic BAM proteins and therefore likely arose from independent horizontal gene transfers from bacteria. We conclude that MAPL proteins with BAM-RING architectures have been present in the holozoan and viridiplantae lineages since their very beginnings. Our work paves the way for future studies into MAPL function in alternative model organisms like Capsaspora owczarzaki and Chlamydomonas reinhardtii that will help to answer the question of MAPL’s ancestral function in ways that cannot be answered by studying animal cells alone.

[详细]

  • PloS one
  • 10年前

Generation of a Transcriptome in a Model Lepidopteran Pest, Heliothis virescens, Using Multiple Sequencing Strategies for Profiling Midgut Gene Expression

生成的模型中的鳞翅目害虫,转录组夜蛾,使用多个测序策略中肠基因表达谱

by Omaththage P. Perera, Kent S. Shelby, Holly J. R. Popham, Fred Gould, Michael J. Adang, Juan Luis Jurat-Fuentes

Heliothine pests such as the tobacco budworm, Heliothis virescens (F.), pose a significant threat to production of a variety of crops and ornamental plants and are models for developmental and physiological studies. The efforts to develop new control measures for H. virescens, as well as its use as a relevant biological model, are hampered by a lack of molecular resources. The present work demonstrates the utility of next-generation sequencing technologies for rapid molecular resource generation from this species for which lacks a sequenced genome. In order to amass a de novo transcriptome for this moth, transcript sequences generated from Illumina, Roche 454, and Sanger sequencing platforms were merged into a single de novo transcriptome assembly. This pooling strategy allowed a thorough sampling of transcripts produced under diverse environmental conditions, developmental stages, tissues, and infections with entomopathogens used for biological control, to provide the most complete transcriptome to date for this species. Over 138 million reads from the three platforms were assembled into the final set of 63,648 contigs. Of these, 29,978 had significant BLAST scores indicating orthologous relationships to transcripts of other insect species, with the top-hit species being the monarch butterfly (Danaus plexippus) and silkworm (Bombyx mori). Among identified H. virescens orthologs were immune effectors, signal transduction pathways, olfactory receptors, hormone biosynthetic pathways, peptide hormones and their receptors, digestive enzymes, and insecticide resistance enzymes. As an example, we demonstrate the utility of this transcriptomic resource to study gene expression profiling of larval midguts and detect transcripts of putative Bacillus thuringiensis (Bt) Cry toxin receptors. The substantial molecular resources described in this study will facilitate development of H. virescens as a relevant biological model for functional genomics and for new biological experimentation needed to develop efficient control efforts for this and related Noctuid pest moths.

[详细]

  • PloS one
  • 10年前

De Novo Assembly of Bitter Gourd Transcriptomes: Gene Expression and Sequence Variations in Gynoecious and Monoecious Lines

从头苦瓜转录组装配:基因表达与雌性和雌雄同株系序列变异

by Anjali Shukla, V. K. Singh, D. R. Bharadwaj, Rajesh Kumar, Ashutosh Rai, A. K. Rai, Raja Mugasimangalam, Sriram Parameswaran, Major Singh, P. S. Naik

Bitter gourd (Momordica charantia L.) is a nutritious vegetable crop of Asian origin, used as a medicinal herb in Indian and Chinese traditional medicine. Molecular breeding in bitter gourd is in its infancy, due to limited molecular resources, particularly on functional markers for traits such as gynoecy. We performed de novo transcriptome sequencing of bitter gourd using Illumina next-generation sequencer, from root, flower buds, stem and leaf samples of gynoecious line (Gy323) and a monoecious line (DRAR1). A total of 65,540 transcripts for Gy323 and 61,490 for DRAR1 were obtained. Comparisons revealed SNP and SSR variations between these lines and, identification of gene classes. Based on available transcripts we identified 80 WRKY transcription factors, several reported in responses to biotic and abiotic stresses; 56 ARF genes which play a pivotal role in auxin-regulated gene expression and development. The data presented will be useful in both functions studies and breeding programs in bitter gourd.

[详细]

  • PloS one
  • 10年前

Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes

氧化带3人红细胞聚集的粒子模拟

by Hanae Shimo, Satya Nanda Vel Arjunan, Hiroaki Machiyama, Taiko Nishino, Makoto Suematsu, Hideaki Fujita, Masaru Tomita, Koichi Takahashi

Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.

[详细]

  • PLOS Computational Biology
  • 10年前

Disease Interventions Can Interfere with One Another through Disease-Behaviour Interactions

疾病的干预措施可以互相干扰,通过疾病行为的相互作用

by Michael A. Andrews, Chris T. Bauch

Theoretical models of disease dynamics on networks can aid our understanding of how infectious diseases spread through a population. Models that incorporate decision-making mechanisms can furthermore capture how behaviour-driven aspects of transmission such as vaccination choices and the use of non-pharmaceutical interventions (NPIs) interact with disease dynamics. However, these two interventions are usually modelled separately. Here, we construct a simulation model of influenza transmission through a contact network, where individuals can choose whether to become vaccinated and/or practice NPIs. These decisions are based on previous experience with the disease, the current state of infection amongst one's contacts, and the personal and social impacts of the choices they make. We find that the interventions interfere with one another: because of negative feedback between intervention uptake and infection prevalence, it is difficult to simultaneously increase uptake of all interventions by changing utilities or perceived risks. However, on account of vaccine efficacy being higher than NPI efficacy, measures to expand NPI practice have only a small net impact on influenza incidence due to strongly mitigating feedback from vaccinating behaviour, whereas expanding vaccine uptake causes a significant net reduction in influenza incidence, despite the reduction of NPI practice in response. As a result, measures that support expansion of only vaccination (such as reducing vaccine cost), or measures that simultaneously support vaccination and NPIs (such as emphasizing harms of influenza infection, or satisfaction from preventing infection in others through both interventions) can significantly reduce influenza incidence, whereas measures that only support expansion of NPI practice (such as making hand sanitizers more available) have little net impact on influenza incidence. (However, measures that improve NPI efficacy may fare better.) We conclude that the impact of interference on programs relying on multiple interventions should be more carefully studied, for both influenza and other infectious diseases.

[详细]

  • PLOS Computational Biology
  • 10年前

Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules

节能高效的稀疏连接的突触可塑性规则的不平衡

by João Sacramento, Andreas Wichert, Mark C. W. van Rossum

It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum.

[详细]

  • PLOS Computational Biology
  • 10年前

Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2

在MDM2蛋白的配体依赖性的有序过渡调制研究

by Juan A. Bueren-Calabuig, Julien Michel

Numerous biomolecular interactions involve unstructured protein regions, but how to exploit such interactions to enhance the affinity of a lead molecule in the context of rational drug design remains uncertain. Here clarification was sought for cases where interactions of different ligands with the same disordered protein region yield qualitatively different results. Specifically, conformational ensembles for the disordered lid region of the N-terminal domain of the oncoprotein MDM2 in the presence of different ligands were computed by means of a novel combination of accelerated molecular dynamics, umbrella sampling, and variational free energy profile methodologies. The resulting conformational ensembles for MDM2, free and bound to p53 TAD (17-29) peptide identify lid states compatible with previous NMR measurements. Remarkably, the MDM2 lid region is shown to adopt distinct conformational states in the presence of different small-molecule ligands. Detailed analyses of small-molecule bound ensembles reveal that the ca. 25-fold affinity improvement of the piperidinone family of inhibitors for MDM2 constructs that include the full lid correlates with interactions between ligand hydrophobic groups and the C-terminal lid region that is already partially ordered in apo MDM2. By contrast, Nutlin or benzodiazepinedione inhibitors, that bind with similar affinity to full lid and lid-truncated MDM2 constructs, interact additionally through their solubilizing groups with N-terminal lid residues that are more disordered in apo MDM2.

[详细]

  • PLOS Computational Biology
  • 10年前

Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication

野山羊的参考基因组(<它>野山羊<它>)和山羊品种的测序提供洞察山羊驯化的遗传基础

Background: Domestic goats (Capra hircus) have been selected to play an essential role in agricultural production systems, since being domesticated from their wild progenitor, bezoar (Capra aegagrus). A detailed understanding of the genetic consequences imparted by the domestication process remains a key goal of evolutionary genomics. Results: We constructed the reference genome of bezoar and sequenced representative breeds of domestic goats to search for genomic changes that likely have accompanied goat domestication and breed formation. Thirteen copy number variation genes associated with coat color were identified in domestic goats, among which ASIP gene duplication contributes to the generation of light coat-color phenotype in domestic goats. Analysis of rapidly evolving genes identified genic changes underlying behavior-related traits, immune response and production-related traits. Conclusion: Based on the comparison studies of copy number variation genes and rapidly evolving genes between wild and domestic goat, our findings and methodology shed light on the genetic mechanism of animal domestication and will facilitate future goat breeding.

[详细]

  • BMC Genomics 2015, null:431
  • 10年前

Gene network analysis shows immune-signaling and ERK1/2 as novel genetic markers for multiple addiction phenotypes: alcohol, smoking and opioid addiction

基因网络分析显示免疫信号和ERK1 / 2多个新的遗传标记:酒精成瘾的表型,吸烟和阿片成瘾

Background: Addictions to alcohol and tobacco, known risk factors for cancer, are complex heritable disorders. Addictive behaviors have a bidirectional relationship with pain. We hypothesize that the associations between alcohol, smoking, and opioid addiction observed in cancer patients have a genetic basis. Therefore, using bioinformatics tools, we explored the underlying genetic basis and identified new candidate genes and common biological pathways for smoking, alcohol, and opioid addiction. Results: Literature search showed 56 genes associated with alcohol, smoking and opioid addiction. Using Core Analysis function in Ingenuity Pathway Analysis software, we found that ERK1/2 was strongly interconnected across all three addiction networks. Genes involved in immune signaling pathways were shown across all three networks. Connect function from IPA My Pathway toolbox showed that DRD2 is the gene common to both the list of genetic variations associated with all three addiction phenotypes and the components of the brain neuronal signaling network involved in substance addiction. The top canonical pathways associated with the 56 genes were: 1) calcium signaling, 2) GPCR signaling, 3) cAMP-mediated signaling, 4) GABA receptor signaling, and 5) G-alpha i signaling.ConlusionsCancer patients are often prescribed opioids for cancer pain thus increasing their risk for opioid abuse and addiction. Our findings provide candidate genes and biological pathways underlying addiction phenotypes, which may be future targets for treatment of addiction. Further study of the variations of the candidate genes could allow physicians to make more informed decisions when treating cancer pain with opioid analgesics.

[详细]

  • BMC Systems Biology 2015, null:25
  • 10年前

Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation

核蛋白1有助于RNA聚合酶II转录激活与兼容的染色质景观

Background: Nuclear myosin 1c (NM1) is emerging as regulator of transcription and chromatin organization. Results: Using chromatin immunoprecipitation and deep sequencing (ChIP-Seq) in combination with molecular analyses, here we investigated the global association of NM1 with the mammalian genome. Analysis of the ChIP-Seq data demonstrates that NM1 binds across the entire mammalian genome with occupancy peaks correlating with distributions of RNA Polymerase II (Pol II) and active epigenetic marks at class II genes promoters. In mouse embryonic fibroblasts subjected to RNAi mediated NM1 gene silencing, we show that NM1 synergizes with polymerase-associated actin to maintain active Pol II at the promoter. NM1 also co-localizes with the nucleosome remodeler SNF2h at class II promoters where they assemble together with WSTF as part of the B-WICH complex. A high resolution micrococcal nuclease (MNase) assay and quantitative real time PCR shows that this mechanism is required for local chromatin remodeling. Following B-WICH assembly, NM1 mediates physical recruitment of the histone acetyl transferase PCAF and the histone methyl transferase Set1/Ash2 to maintain and preserve H3K9acetylation and H3K4trimethylation for active transcription. Conclusions: We propose a novel genome-wide mechanism where myosin synergizes with Pol II-associated actin to link the polymerase machinery with permissive chromatin for transcription activation.

[详细]

  • BMC Biology 2015, null:35
  • 10年前

Regulation of the ESC transcriptome by nuclear long non-coding RNAs [RESEARCH]

由核长非编码RNA的[研究] ESC的转录调控

Long noncoding (lnc)RNAs have recently emerged as key regulators of gene expression. Here, we performed high-depth poly(A)+ RNA sequencing across multiple clonal populations of mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs) to comprehensively identify differentially regulated lncRNAs. We establish a biologically robust profile of lncRNA expression in these two cell types and further confirm that the majority of these lncRNAs are enriched in the nucleus. Applying weighted gene co-expression network analysis, we define a group of lncRNAs that are tightly associated with the pluripotent state of ESCs. Among these, we show that acute depletion of PAT-14 using antisense oligonucleotides impacts the differentiation- and development-associated gene expression program of ESCs. Furthermore, we demonstrate that Firre, a lncRNA highly enriched in the nucleoplasm and previously reported to mediate chromosomal contacts in ESCs, controls a network of genes related to RNA processing. Together, we provide a comprehensive, up-to-date and high resolution compilation of lncRNA expression in ESCs and NPCs and show that nuclear lncRNAs are tightly integrated into the regulation of ESC gene expression.

[详细]

  • Genome Research
  • 10年前
  • RESEARCH

High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9 [METHOD]

高通量基因打靶和表型斑马鱼使用CRISPR/Cas9 [方法]

The use of CRISPR/Cas9 as a genome-editing tool in various model organisms has radically changed targeted mutagenesis. Here, we present a high-throughput targeted mutagenesis pipeline using CRISPR/Cas9 technology in zebrafish that will make possible both saturation mutagenesis of the genome and large-scale phenotyping efforts. We describe a cloning-free single-guide RNA (sgRNA) synthesis, coupled with streamlined mutant identification methods utilizing fluorescent PCR and multiplexed, high-throughput sequencing. We report germline transmission data from 162 loci targeting 83 genes in the zebrafish genome, in which we obtained a 99% success rate for generating mutations and an average germline transmission rate of 28%. We verified 678 unique alleles from 58 genes by high-throughput sequencing. We demonstrate that our method can be used for efficient multiplexed gene targeting. We also demonstrate that phenotyping can be done in the F1 generation by inbreeding two injected founder fish, significantly reducing animal husbandry and time. This study compares germline transmission data from CRISPR/Cas9 with those of TALENs and ZFNs and shows that efficiency of CRISPR/Cas9 is sixfold more efficient than other techniques. We show that the majority of published "rules" for efficient sgRNA design do not effectively predict germline transmission rates in zebrafish, with the exception of a GG or GA dinucleotide genomic match at the 5' end of the sgRNA. Finally, we show that predicted off-target mutagenesis is of low concern for in vivo genetic studies.

[详细]

  • Genome Research
  • 10年前
  • METHOD

Unraveling determinants of transcription factor binding outside the core binding site [METHOD]

揭开转录因子结合的核心结合位点[方法]外部因素

Binding of transcription factors (TFs) to regulatory sequences is a pivotal step in the control of gene expression. Despite many advances in the characterization of sequence motifs recognized by TFs, our ability to quantitatively predict TF binding to different regulatory sequences is still limited. Here, we present a novel experimental assay termed BunDLE-seq that provides quantitative measurements of TF binding to thousands of fully designed sequences of 200 bp in length within a single experiment. Applying this binding assay to two yeast TFs, we demonstrate that sequences outside the core TF binding site profoundly affect TF binding. We show that TF-specific models based on the sequence or DNA shape of the regions flanking the core binding site are highly predictive of the measured differential TF binding. We further characterize the dependence of TF binding, accounting for measurements of single and co-occurring binding events, on the number and location of binding sites and on the TF concentration. Finally, by coupling our in vitro TF binding measurements, and another application of our method probing nucleosome formation, to in vivo expression measurements carried out with the same template sequences serving as promoters, we offer insights into mechanisms that may determine the different expression outcomes observed. Our assay thus paves the way to a more comprehensive understanding of TF binding to regulatory sequences and allows the characterization of TF binding determinants within and outside of core binding sites.

[详细]

  • Genome Research
  • 10年前
  • METHOD

Characterization and dynamics of pericentromere-associated domains in mice [RESEARCH]

小鼠[研究]的pericentromere相关域表征及动力学

Despite recent progress in genome topology knowledge, the role of repeats, which make up the majority of mammalian genomes, remains elusive. Satellite repeats are highly abundant sequences that cluster around centromeres, attract pericentromeric heterochromatin, and aggregate into nuclear chromocenters. These nuclear landmark structures are assumed to form a repressive compartment in the nucleus to which genes are recruited for silencing. We have designed a strategy for genome-wide identification of pericentromere-associated domains (PADs) in different mouse cell types. The ~1000 PADs and non-PADs have similar chromatin states in embryonic stem cells, but during lineage commitment, chromocenters progressively associate with constitutively inactive genomic regions at the nuclear periphery. This suggests that PADs are not actively recruited to chromocenters, but that chromocenters are themselves attracted to inactive chromatin compartments. However, we also found that experimentally induced proximity of an active locus to chromocenters was sufficient to cause gene repression. Collectively, our data suggest that rather than driving nuclear organization, pericentromeric satellite repeats mostly co-segregate with inactive genomic regions into nuclear compartments where they can contribute to stable maintenance of the repressed status of proximal chromosomal regions.

[详细]

  • Genome Research
  • 10年前
  • RESEARCH

R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server

r3d-2-msa:三维结构的RNA多序列比对服务器

The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa.

[详细]

  • Nucleic Acids Research
  • 10年前
  • Web Server Issue

The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis

RAD52蛋白odb1是两线粒体内含子通过第一步水解的有效切除要求

Transcript splicing in plant mitochondria involves numerous nucleus-encoded factors, most of which are of eukaryotic origin. Some of these belong to protein families initially characterised to perform unrelated functions. The RAD52-like ODB1 protein has been reported to have roles in homologous recombination-dependent DNA repair in the nuclear and mitochondrial compartments in Arabidopsis thaliana. We show that it is additionally involved in splicing and facilitates the excision of two cis-spliced group II introns, nad1 intron 2 and nad2 intron 1, in Arabidopsis mitochondria. odb1 mutants lacking detectable amounts of ODB1 protein over-accumulated incompletely spliced nad1 and nad2 transcripts. The two ODB1-dependent introns were both found to splice via first-step hydrolysis and to be released as linear or circular molecules instead of lariats. Our systematic analysis of the structures of excised introns in Arabidopsis mitochondria revealed several other hydrolytically spliced group II introns in addition to nad1 intron 2 and nad2 intron 1, indicating that ODB1 is not a general determinant of the hydrolytic splicing pathway.

[详细]

  • Nucleic Acids Research
  • 10年前
  • RNA

Evolution of CONSTANS Regulation and Function after Gene Duplication Produced a Photoperiodic Flowering Switch in the Brassicaceae

在基因复制产生的十字花科植物光周期开花开关常数调节和功能演变

Environmental control of flowering allows plant reproduction to occur under optimal conditions and facilitates adaptation to different locations. At high latitude, flowering of many plants is controlled by seasonal changes in day length. The photoperiodic flowering pathway confers this response in the Brassicaceae, which colonized temperate latitudes after divergence from the Cleomaceae, their subtropical sister family. The CONSTANS (CO) transcription factor of Arabidopsis thaliana, a member of the Brassicaceae, is central to the photoperiodic flowering response and shows characteristic patterns of transcription required for day-length sensing. CO is believed to be widely conserved among flowering plants; however, we show that it arose after gene duplication at the root of the Brassicaceae followed by divergence of transcriptional regulation and protein function. CO has two close homologs, CONSTANS-LIKE1 (COL1) and COL2, which are related to CO by tandem duplication and whole-genome duplication, respectively. The single CO homolog present in the Cleomaceae shows transcriptional and functional features similar to those of COL1 and COL2, suggesting that these were ancestral. We detect cis-regulatory and codon changes characteristic of CO and use transgenic assays to demonstrate their significance in the day-length-dependent activation of the CO target gene FLOWERING LOCUS T. Thus, the function of CO as a potent photoperiodic flowering switch evolved in the Brassicaceae after gene duplication. The origin of CO may have contributed to the range expansion of the Brassicaceae and suggests that in other families CO genes involved in photoperiodic flowering arose by convergent evolution.

[详细]

  • Molecular Biology and Evolution
  • 10年前
  • Research Article

Proposal of a Twin-arginine translocator system-mediated constraint against loss of ATP synthase genes from nonphotosynthetic plastid genomes

一双精氨酸转运系统介导的约束对建议ATP合酶基因进行光合作用的质体基因组的损失

Organisms with nonphotosynthetic plastids often retain genomes; their gene contents provide clues as to the functions of these organelles. Yet the functional roles of some retained genes – such as those coding for ATP synthase – remain mysterious. In this study, we report the complete plastid genome and transcriptome data of a nonphotosynthetic diatom and propose that its ATP synthase genes may function in ATP hydrolysis to maintain a proton gradient between thylakoids and stroma, required by the Twin-arginine translocator (Tat) system for translocation of particular proteins into thylakoids. Given the correlated retention of ATP synthase genes and genes for the Tat system in distantly related nonphotosynthetic plastids, we suggest that this Tat-related role for ATP synthase was a key constraint during parallel loss of photosynthesis in multiple independent lineages of algae/plants.

[详细]

  • Molecular Biology and Evolution
  • 10年前
  • Letter

Longevity is linked to mitochondrial mutation rates in rockfish: a test using Poisson regression

长寿与在石斑鱼类线粒体突变率:采用泊松回归

The mitochondrial theory of ageing proposes that the cumulative effect of biochemical damage in mitochondria causes mitochondrial mutations and plays a key role in ageing. Numerous studies have applied comparative approaches to test one of the predictions of the theory: that the rate of mitochondrial mutations is negatively correlated with longevity. Comparative studies face three challenges in detecting correlates of mutation rate: covariation of mutation rates between species due to ancestry, covariation between life history traits, and difficulty obtaining accurate estimates of mutation rate. We address these challenges using a novel Poisson regression method to examine the link between mutation rate and lifespan in rockfish (Sebastes). This method has better performance than traditional sister-species comparisons when sister species are too recently diverged to give reliable estimates of mutation rate. Rockfish are an ideal model system: they have long life spans with indeterminate growth and little evidence of senescence, which minimizes the confounding tradeoffs between lifespan and fecundity. We show that lifespan in rockfish is negatively correlated to rate of mitochondrial mutation, but not the rate of nuclear mutation. The life history of rockfish allows us to conclude that this relationship is unlikely to be driven by the tradeoffs between longevity and fecundity, or by the frequency of DNA replications in the germline. Instead the relationship is compatible with the hypothesis that mutation rates are reduced by selection in long-lived taxa to reduce the chance of mitochondrial damage over its lifespan, consistent with the mitochondrial theory of ageing.

[详细]

  • Molecular Biology and Evolution
  • 10年前
  • Research Article

[Feature] Making contact

[特征]接触

Villagers along the muddy banks of the Curanja River in the remote Peruvian Amazon are reporting frequent sightings and even raids by a mysterious, isolated tribe that lives deep in the rainforest. These isolated people rely on their deep knowledge of the ecosystem for food, medicines, and goods; now, pressures on the forest may be pushing them into the outside world. The events along the Curanja are the last, lingering echoes of the collision of cultures that began in 1492, in which an estimated 50 million to 100 million native people perished, and entire cultures vanished. Anthropologists and officials wonder if they can minimize the human toll of this final act. Lacking immunity to common pathogens and requiring large tracts of intact forest for their way of life, the isolated tribes are some of the world's most vulnerable people.

[详细]

  • Science
  • 10年前